Co-encadrant de thèse éventuel :

Nom :

Prénom :

Email :

Téléphone :

Email de contact

Frederic.Cazals@inria.fr

pour ce sujet :

Description du sujet :

Context: All biological functions (cognition, immune response, metabolism, etc) rely on biomolecules. The functions of these biomolecules depend on their structure but also dynamics, requiring the identification of meta-stable states (i.e. states stable on long time scales) together with transitions between these. As of today, except in rare cases where massive molecular dynamics or Monte Carlo simulations are used [1], these time scales remain out of reach. The goal of this thesis will be to develop novel methods, ideally orders of magnitude faster than current ones, delivering accurate information on complex multi-scale mechanisms.

Goals: Since each atom has three Cartesian coordinates, the conformation of a molecule with n atoms is described by 3n coordinates and d = 3n − 6 degrees of freedom or dof. (One removes the dof for 3D translations and rotations, whence 3n − 6.) All properties of the molecule are thus determined by an energy surface of dimension d, typically several thousands, called the potential energy surface (PES). Despite intensive research, the exploration and the characterization of such surfaces is currently an open problem. From a computer science / applied mathematics standpoint, the problems faced as well posed, though. From the structural standpoint, stable structures correspond to local minima of the PES. From the thermodynamic viewpoint, meta-stability is characterized by occupancy probabilities (for Boltzmann’s distribution) of selected basins of the PES. Finally, dynamics may be modeled by a Markov state model involving meta-stable states.
The derivation of such properties and models intrinsically requires a dimensionality reduction step, as average properties are best inferred using collective variables providing an abstraction of the aforementioned degrees of freedom. The goal of the thesis will be to develop novel methods delivering accurate models for biomolecules, by combining dimensionality reduction via diffusion maps [2, 3, 4, 5], importance sampling [6, 7], as well as geometric/topological techniques to explore and characterize PES [8, 9, 10]. Software developments will be integrated to the Structural Bioinformatics Library (http://sbl.inria.fr), a state-of-the-art environment providing both low level methods (in generic C++) and specific applications in molecular modeling.

Bibliography

Keywords: high-dimensional spaces, energy landscapes, dimensionality reduction, molecular simulation.

Le laboratoire et l’équipe d’accueil: Inria ABS