Towards useful quantum computation

Damian Markham

Plan

1. What is quantum?
2. What is quantum computing?
3. What can we do with quantum computers?
4. What's so hard about building a quantum computer?
5. Near term quantum computing
6. Going beyond big algorithms: quantum networks
7. What is quantum?
8. What is quantum?

Quantum randomness is different from classical 'randomness'

Classical randomness = ignorance!

E.g. - rolling a die

- Boltzmann distribution of particles in a box

If we know the initial conditions, outcome is deterministic

Quantum randomness $;$ ignorance!

Quantum randomness \neq ignorance!

Polarisation filter measurements

Sunglasses, photographic plates....
The tilting head game: (try looking at your phone / tablette through polarised sunglasses and tilt you head)

Polarisation filter measurements

- Light comes in single photons

- Polarizing filters: only aligned photons pass

Polarisation filter measurements

Only light polarised in fixed direction passes through

Combining filters -> less light

Combining filters -> less light

Inserting a filter...?

Inserting a filter...?

Polarisation filter measurements:

A classical model

- Light comes in single photons

Classical assumptions:

- The 'measurement' is deterministic (modulo our ignorance)
- Measurements do not change the system

Polarisation filter measurements:

A classical model

- Light comes in single photons

Classical assumptions

- The 'measurement' is deterministic

- Measurements do not change the system

Polarisation filter measurements:

A classical model

- Light comes in single photons

Classical assumptions

- The 'measurement' is deterministic

- Measurements do not change the system

Having an extra filter in between should not effect this property

Polarisation filter measurements:

A classical model

Polarisation filter measurements:

A classical model

Polarisation filter measurements:

A classical model

Polarisation filter measurements:

A classical model

-> if not absorbed
Having an extra filter in between should not effect this property
...as if no filter...
-> no photon out

Polarisation filter measurements:

A classical model

Classically: in all cases
-> no photon out

In the real 'quantum world...

In the real 'quantum world...

In the real 'quantum world...

Polarisation filter measurements:

Quantum measurements

QM answer: Filters as a measurement

Some easy linear algebra...
Adding a filter
-> some photons out!

Quantum randomness is not just ignorance!

Quantum randomness is not just ignorance!

There is no way to assign 'value' to the polarisation and get a deterministic outcome

Polarisation filter measurements

- Light comes in single photons

Classical assumptions

- The 'measurement' is deterministic

Individual photon should either

- Measurements do not change the system

I don't believe it!
go through or get absorbed determinsitically!

Bell's theorem

Use entangled pair to test!
Single, but distant, measurements
Locality => canNOT change state

Bell's theorem

Bell: ANY Local Hidden Variable model
(i.e. where some theory knows the outcome) QM gives!

$$
S=\left|a \cdot b+a \cdot b^{\prime}+a^{\prime} \cdot b-a^{\prime} \cdot b^{\prime}\right| \leq 2=2 \sqrt{ } 2
$$

Bell's theorem

Bell: ANY Local Hidden Variable model
(i.e. where some theory knows the outcome) QM gives!

$$
S=\left|a \cdot b+a \cdot b^{\prime}+a^{\prime} \cdot b-a^{\prime} \cdot b^{\prime}\right| \leq 2=2 \sqrt{ } 2
$$

Quantum randomness is not just ignorance!

There is no way to assign 'value' to the polarisation and get a deterministic outcome

Peres-Mermin magic square game

Quantum randomness is different from classical 'randomness'

Games that 'classical' devices cannot win, but quantum can

Peres-Mermin magic square game

Peres-Mermin magic square game

- Player assigns values to all squares in grid

$$
v_{i}= \pm 1
$$

Peres-Mermin magic square game

- Player assigns values to all squares in grid

$$
v_{i}= \pm 1
$$

- Referee chooses a column or a row, at random, and reads the the product of the values

Peres-Mermin magic square game

- Player assigns values to all squares in grid

$$
v_{i}= \pm 1
$$

- Referee chooses a column or a row, at random, and reads the the product of the values

$$
c_{1}=v_{1} \cdot v_{4} \cdot v_{7}
$$

Peres-Mermin magic square game

- Player assigns values to all squares in grid

$$
v_{i}= \pm 1
$$

- Referee chooses a column or a row, at random, and reads the the product of the values

Peres-Mermin magic square game

- Player assigns values to all squares in grid

$$
v_{i}= \pm 1
$$

- Referee chooses a column or a row, at random, and reads the the product of the values
- Player wins if

$$
\begin{aligned}
& c_{1}=v_{1} \cdot v_{4} \cdot v_{7}=1 \\
& c_{2}=v_{2} \cdot v_{5} \cdot v_{8}=1 \\
& c_{3}=v_{3} \cdot v_{6} \cdot v_{9}=1 \\
& r_{1}=v_{1} \cdot v_{2} \cdot v_{3}=1 \\
& r_{2}=v_{4} \cdot v_{5} \cdot v_{6}=1 \\
& r_{3}=v_{7} \cdot v_{8} \cdot v_{9}=-1
\end{aligned}
$$

Peres-Mermin magic square game

- Player assigns values to all squares in grid

$$
v_{i}= \pm 1
$$

- Referee chooses a column or a row, at random, and reads the the product of the values
- Player wins if

$$
\begin{aligned}
& c_{1}=v_{1} \cdot v_{4} \cdot v_{7}=1 \\
& c_{2}=v_{2} \cdot v_{5} \cdot v_{8}=1 \\
& c_{3}=v_{3} \cdot v_{6} \cdot v_{9}=1 \\
& r_{1}=v_{1} \cdot v_{2} \cdot v_{3}=1 \\
& r_{2}=v_{4} \cdot v_{5} \cdot v_{6}=1 \\
& r_{3}=v_{7} \cdot v_{8} \cdot v_{9}=-1
\end{aligned}
$$

$p($ win $)=\frac{1}{6}\left(p\left(c_{1}=1\right)+p\left(c_{2}=1\right)+p\left(c_{3}=1\right)+p\left(r_{1}=1\right)+p\left(r_{2}=1\right)+p\left(r_{3}=-1\right)\right)$

Best possible $p($ win $)$?

$$
p(\text { win })=\frac{1}{6}\left(p\left(c_{1}=1\right)+p\left(c_{2}=1\right)+p\left(c_{3}=1\right)+p\left(r_{1}=1\right)+p\left(r_{2}=1\right)+p\left(r_{3}=-1\right)\right)
$$

Best possible $p($ win $)$?

$p($ win $)=\frac{1}{6}\left(p\left(c_{1}=1\right)+p\left(c_{2}=1\right)+p\left(c_{3}=1\right)+p\left(r_{1}=1\right)+p\left(r_{2}=1\right)+p\left(r_{3}=-1\right)\right)$

Best possible $p($ win $)$?

Best possible $p($ win $)$?

Best possible $p($ win $)$?

- Any fixed (deterministic) assignment can only satisfy 5/6 winning conditions

Best possible p (win)?

- Any fixed (deterministic) assignment can only satisfy $5 / 6$ winning conditions

$$
c_{1} \cdot c_{2} \cdot c_{3}=r_{1} \cdot r_{2} \cdot r_{3}
$$

Incompatible with
$c_{1}=c_{2}=c_{3}=r_{1}=r_{2}=1$

$$
r_{3}=-1
$$

Cannot always win!

Best possible $p($ win $)$?

- Any fixed (deterministic) assignment can only satisfy $5 / 6$ winning conditions
- Any randomized assignment can only do as well as the best deterministic assignment

Best possible classical $p($ win $)$?

- Any fixed (deterministic) assignment can only satisfy $5 / 6$ winning conditions
- Any randomized assignment can only do as well as the best deterministic assignment

Best quantum p (win)?

Best quantum p (win)?

Best quantum p (win)?

Peres-Mermin magic square game

$$
\begin{aligned}
& p_{c}(\text { win }) \leq \frac{5}{6} \\
& p_{Q}(\text { win })=1
\end{aligned}
$$

- Constraints not achievable classically, can achieve quantumly
- Directe applications to shallow circuit, provable quantum advantage [Bravyi, Gosset, Koening, Science 2017]

Behind all quantum computational advantage?

2. What is quantum computing?

2. What is quantum computing?

$\begin{array}{lc}\text { Bit } & \text { Qubit } \\ 0 / 1 & \alpha|0\rangle+\beta|1\rangle\end{array}$

2. What is quantum computing?

$$
\begin{aligned}
& \text { Bit } \\
& 0 / 1
\end{aligned}
$$

$$
\begin{gathered}
\text { Qubit } \\
\alpha|0\rangle+\beta|1\rangle
\end{gathered}
$$

Unitary gates

$$
\begin{aligned}
& \alpha|0\rangle+\beta|1\rangle-X-\alpha|1\rangle+\beta|0\rangle \\
& \text { Not } \\
& \text { Unitary map } \\
& \text { (Reversible) }
\end{aligned}
$$

2. What is quantum computing?

Qubit

$$
\alpha|0\rangle+\beta|1\rangle
$$

Unitary gates
$\alpha|0\rangle+\beta|1\rangle-\underset{\text { Not }}{-X}-\alpha|1\rangle+\beta|0\rangle$
Readout measurements

2. What is quantum computing?

2. What is quantum computing?

Circuit model
Quantum circuit model

Universal gate set: NOT, AND, OR
Universal quantum gate set: CNOT, pi/8, H

Complexity classes for quantum computing

Decision problems:

Functions from bit strings length n to single bit

$$
f:\{0,1\}^{n} \rightarrow\{0,1\}
$$

Language L :
Set of inputs which output 1

$$
x \in L \quad \text { iff } \quad f(x)=1
$$

BPP

$L \in$ BPP if \exists a family of circuits $\left\{C_{n}\right\}$ such and a polynomial $q(n)$ such that

- size of circuits $\left|C_{n}\right| \leq q(n)$
- If $x \in L$, output 1 with probability $>2 / 3$
- If $x \notin L$, output 1 with probability $<1 / 3$

BQP

$L \in$ BPP if \exists a family of circuits $\left\{C_{n}\right\}$ such and a polynomial $q(n)$ such that

- size of circuits $\left|C_{n}\right| \leq q(n)$
- If $x \in L$, output 1 with probability $>2 / 3$
- If $x \notin L$, output 1 with probability $<1 / 3$

Other models of quantum computation?

Big conjecture of quantum computing

BPP $\subset \quad B Q P$

Not proven...
3. What can we do with quantum computers?

3. What can we do with quantum computers?

3. What can we do with quantum computers?

Exponential 'improvement'

- Shor's factoring algorithm
[Shor, FOCS 1994]
Factors numbers into primes
\rightarrow could 'crack' RSA
- System of linear equations
[Harrow, Hassidim, Lloyd, PRL 2008]
Notable application to machine
learning
\rightarrow needs 'QRAM'
\rightarrow applications?
'Proven' quantum advantage
- Sampling problems
[Aaronson, Arkhipov 2013]
[Bremner, Josza, Shepherd 2011]
Boson sampling, IQP, random
shallow circuits...
\rightarrow efficient classical simulation
\Rightarrow collapse of PH
-> applications?
- Shallow circuit advantage
[Bravyi, Gosset, König, Science, 2018] Constant depth Q requires log depth C
\rightarrow PROOF: concenquence of ' Q
randomness'
\rightarrow applications?

3. What can we do with quantum computers?

Exponential 'improvement'

- Shor's factoring algorithm
[Shor, FOCS 1994]
Factors numbers into primes
\rightarrow could 'crack' RSA
- System of linear equations
[Harrow, Hassidim, Lloyd, PRL 2008]
Notable application to machine
learning
\rightarrow needs 'QRAM'
\rightarrow applications?
'Proven' quantum advantage
- Sampling problems
[Aaronson, Arkhipov 2013]
[Bremner, Josza, Shepherd 2011]
Boson sampling, IQP, random shallow circuits...
\rightarrow efficient classical simulation
\Rightarrow collapse of PH
\rightarrow applications?
- Shallow circuit advantage
[Bravyi, Gosset, König, Science, 2018] Constant depth Q requires log depth C
\rightarrow PROOF: concenquence of ' Q
randomness'
-> applications?

3. What can we do with quantum computers?

Exponential 'improvement'

- Shor's factoring algorithm
[Shor, FOCS 1994]
Factors numbers into primes \rightarrow could 'crack' RSA
- System of linear equations [Harrow, Hassidim, Lloyd, PRL 2008] Notable application to machine learning
\rightarrow needs 'QRAM'
\rightarrow applications?
'Proven' guantum advantage
- Sampling problems
[Aaronson, Arkhipov 2013]
[Bremner, Josza, Shepherd 201/] Boson sampling, IQP, randone shallow circuits...
\rightarrow efficient classical simulation
\rightarrow collapse of PH
- Shallow circuit advantage
[Bravyi, Gosset, König, Science, 2018]
Constant depth Q requires log depth C
\rightarrow PROOF: concenquenle of ' Q
randomness'
\rightarrow applications?

Variational quantum circuits, ML, ...

Parameterised quantum circuit $\left\{\theta_{i}\right\}$

ML, feedback loop
-> Quantum chemistry
\rightarrow Machine learning
-> ${ }^{-.}$

Shallow quantum circuits

[Bravyi, Gosset, König, Science, 2018]
Quantum circuit

Relational statement $R(\bar{x}, \bar{y})$

Shallow quantum circuits

[Bravyi, Gosset, König, Science, 2018]

Relational statement $\quad R(\bar{x}, \bar{y})$
Impossible to satisfy classically in constant circuit
\rightarrow 'Circuit' magic square game...

Sampling

[Bremner, Josza, Shepherd 2011]
Subuniversal circuit families

No classical poly circuit outputting $\bar{y} p(\bar{y})$ else PH collapses

Sampling

[Bremner, Josza, Shepherd 2011]
Subuniversal circuit families

No classical poly circuit outputting $\bar{y} p(\bar{y})$ else PH collapses
Quantum randomness at play here? Links to shallow circuit?

Sampling hardness implies shallow circuit

Sampling
Subuniversal circuit families

No classical poly circuit outputting $\bar{y} p(\bar{y})$ else PH collapses

Shallow circuit advantage

Relational statement $R(\bar{x}, \bar{y})$
Impossible to satisfy classically in constant circuit

4. What's so hard about building a quantum computer?

Quantum coherence is fragile

- Decoherence, limits to 'classical'
- Require huge control and optimisation...

4. What's so hard about building a quantum computer?

Quantum coherence is fragile

- Decoherence, limits to 'classical'
- Require huge control and optimisation...

Quantum error correction and Fault Tolerance

- Possible!: more systems, more steps, feedback
- Huge overhead...

〈 \uantum,
PAPERS PERSPECTIVES
How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits
Craig Gidney ${ }^{1}$ and Martin Ekerå2,3
${ }^{1}$ Google Inc., Santa Barbara, California 93117, USA
${ }^{2}$ KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
${ }^{3}$ Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden
$20^{\wedge} 6$ noisy qubits to factor 2048 bits

4. What's so hard about building a quantum computer?

Quantum coherence is fragile

- Decoherence, limits to 'classical'
- Require huge control and optimisation...

Quantum error correction and Fault Tolerance

- Possible!: more systems, more steps, feedback
- Huge overhead...

What can we do with quantum computers?

6. Quantum Networks

- Computation

Exponential speed up (Shor), QML

- Communication

Security (QKD), communication complexity

QUANTUM
INTERNET INTERNET
ALLIANCE

Conclusions

Quantum computing is not that complicated...

Just a special linear algebra processor

It's not just Shor's algorithm

```
Sampling Variational,ML,\cdots
Shallow circuit
Search
```

It's not just 'quantum computers'

