Towards useful quantum computation

Damian Markham

Plan

- 1. What is quantum?
- 2. What is quantum computing?
- 3. What can we do with quantum computers?
- 4. What's so hard about building a quantum computer?
- 5. Near term quantum computing
- 6. Going beyond big algorithms: quantum networks

1. What is quantum?

1. What is quantum?

Quantum randomness is different from classical 'randomness'

Classical randomness = ignorance!

Quantum randomness **#** ignorance!

Quantum randomness *f* ignorance!

Polarisation filter measurements

Sunglasses, photographic plates....

The tilting head game: (try looking at your phone / tablette through polarised sunglasses and tilt you head)

• Light comes in single photons

• Polarizing filters: only aligned photons pass

Only light polarised in fixed direction passes through

Combining filters -> less light

Sequence of perpendicular filters -> NO LIGHT gets ghrough

Combining filters -> less light

Sequence of perpendicular filters -> NO LIGHT gets ghrough

Inserting a filter...?

Inserting a filter...?

A classical model

• Light comes in single photons

Classical assumptions:

- The 'measurement' is deterministic (modulo our ignorance)
- Measurements do not change the system

A classical model

• Light comes in single photons

Classical assumptions

• The 'measurement' is deterministic

Individual photon should either go through or get absorbed determinsitically!

• Measurements do not change the system

A classical model

• Light comes in single photons

Classical assumptions

• The 'measurement' is deterministic

• Measurements do not change the system

Individual photon should either go through or get absorbed determinsitically!

> Having an extra filter in between should not effect this property

A classical model

Individual photon should either go through or get absorbed determinsitically!

A classical model

-> if absorbed, <u>no photon out</u>

A classical model

-> if not absorbed

Having an extra filter in between should not effect this property

A classical model

-> if not absorbed Having an extra filter in between should not effect this property ...as if no filter... -> no photon out

A classical model

Classically: in all cases -> <u>no photon out</u>

In the real 'quantum world...

In the real 'quantum world...

-> some photons out!

In the real 'quantum world...

Polarisation filter measurements: Quantum measurements

QM answer: Filters as a measurement

Some easy linear algebra...

Adding a filter -> <u>some photons out!</u>

Quantum randomness is not just ignorance!

Quantum randomness is not just ignorance!

There is no way to assign 'value' to the polarisation and get a deterministic outcome

• Light comes in single photons

Classical assumptions

• The 'measurement' is deterministic

Individual photon should either go through or get absorbed determinsitically!

Measurements do not change the system

1 don't believe it!

> Having an extra filter in between should not effect this property

Bell's theorem

Use entangled pair to test! Single, but distant, measurements Locality => canNOT change state

Quantum randomness is not just ignorance!

There is no way to assign 'value' to the polarisation and get a deterministic outcome

Peres-Mermin magic square game

Quantum randomness is different from classical 'randomness'

Games that 'classical' devices cannot win, but quantum can

Peres-Mermin magic square game

Peres-Mermin magic square game

- Player assigns values to all squares in grid $v_i = \pm 1$

- Player assigns values to all squares in grid $v_i = \pm 1$
- Referee chooses a column or a row, at random, and reads the the product of the values

- Player assigns values to all squares in grid $v_i = \pm 1$
- Referee chooses a column or a row, at random, and reads the the product of the values

$$c_1 = v_1 \cdot v_4 \cdot v_7$$

- Player assigns values to all squares in grid $v_i = \pm 1$
- Referee chooses a column or a row, at random, and reads the the product of the values

- Player assigns values to all squares in grid $v_i = \pm 1$
- Referee chooses a column or a row, at random, and reads the the product of the values
- Player wins if

$$c_{1} = v_{1} \cdot v_{4} \cdot v_{7} = 1$$

$$c_{2} = v_{2} \cdot v_{5} \cdot v_{8} = 1$$

$$c_{3} = v_{3} \cdot v_{6} \cdot v_{9} = 1$$

$$r_{1} = v_{1} \cdot v_{2} \cdot v_{3} = 1$$

$$r_{2} = v_{4} \cdot v_{5} \cdot v_{6} = 1$$

$$r_{3} = v_{7} \cdot v_{8} \cdot v_{9} = -1$$

- Player assigns values to all squares in grid $v_i = \pm 1$

 $p(win) = \frac{1}{6} \left(p(c_1 = 1) + p(c_2 = 1) + p(c_3 = 1) + p(r_1 = 1) + p(r_2 = 1) + p(r_3 = -1) \right)$

$$p(win) = \frac{1}{6} \left(p(c_1 = 1) + p(c_2 = 1) + p(c_3 = 1) + p(r_1 = 1) + p(r_2 = 1) + p(r_3 = -1) \right)$$

 Any fixed (deterministic) assignment can only satisfy 5/6 winning conditions

- Any fixed (deterministic) assignment can only satisfy 5/6 winning conditions $c_1 \cdot c_2 \cdot c_3 = r_1 \cdot r_2 \cdot r_3$ Incompatible with $c_1 = c_2 = c_3 = r_1 = r_2 = 1$ $r_3 = -1$ Cannot always win! $c_1 = 1 \quad c_2 = 1 \quad c_3 = 1$

- Any fixed (deterministic) assignment can only satisfy 5/6 winning conditions
- Any randomized assignment can only do as well as the best deterministic assignment

Best possible classical p(win)?

- Any fixed (deterministic) assignment can only satisfy 5/6 winning conditions
- Any randomized assignment can only do as well as the best deterministic assignment

Best quantum p(win)?

Best quantum p(win)?

Best quantum p(win)?

- Constraints not achievable classically, can achieve quantumly
- Directe applications to shallow circuit, provable quantum advantage [Bravyi, Gosset, Koening, Science 2017]

Behind all quantum computational advantage?

Circuit model

Quantum circuit model

Universal gate set: NOT, AND, OR

Universal quantum gate set: CNOT, pi/8, H

Complexity classes for quantum computing

Decision problems: Functions from bit strings length n to single bit $f: \{0,1\}^n \to \{0,1\}$

Language *L*: Set of inputs which output 1 $x \in L$ iff f(x) = 1

<u>BPP</u>

 $L \in \text{BPP}$ if \exists a family of circuits $\{C_n\}$ such and a polynomial q(n) such that

- size of circuits $|C_n| \le q(n)$
- If $x \in L$, output 1 with probability > 2/3
- If $x \notin L$, output 1 with probability <1/3

<u>BQP</u>

 $L \in \text{BPP}$ if \exists a family of circuits $\{C_n\}$ such and a polynomial q(n) such that

- size of circuits $|C_n| \le q(n)$
- If $x \in L$, output 1 with probability > 2/3
- If $x \notin L$, output 1 with probability <1/3

Big conjecture of quantum computing

 $\mathsf{BPP} \subset \mathsf{BQP}$

Not proven...

Factoring primes (cracks RSA)

Search

Quantum Chemisty

development

walks

10 or 40-70 qubits -> 100 qubits beyond classical

Exponential 'improvement'

- Shor's factoring algorithm
 [Shor, FOCS 1994]

 Factors numbers into primes
 -> could 'crack' RSA
- - -> applications?

'Proven' quantum advantage

- Sampling problems

 [Aaronson, Arkhipov 2013]
 [Bremner, Josza, Shepherd 2011]
 Boson sampling, IQP, random shallow circuits...
 -> efficient classical simulation
 => collapse of PH
 -> applications?
- Shallow circuit advantage
 [Bravyi, Gosset, König, Science, 2018]
 Constant depth Q requires log depth C
 -> PROOF: concenquence of 'Q
 randomness'
 -> applications?

Exponential 'improvement'

- Shor's factoring algorithm
 [Shor, FOCS 1994]

 Factors numbers into primes
 -> could 'crack' RSA
- System of linear equations

 [Harrow, Hassidim, Lloyd, PRL 2008]
 Notable application to machine
 learning
 -> needs 'QRAM'
 - -> applications?

'Proven' quantum advantage

- Sampling problems

 [Aaronson, Arkhipov 2013]
 [Bremner, Josza, Shepherd 2011]
 Boson sampling, IQP, random
 shallow circuits...
 - -> efficient classical simulation => collapse of PH -> applications?
- Shallow circuit advantage
 [Bravyi, Gosset, König, Science, 2018]
 Constant depth Q requires log depth C
 -> PROOF: concenquence of 'Q
 randomness'
 -> applications?

Exponential 'improvement'

- Shor's factoring algorithm [Shor, FOCS 1994] Factors numbers into primes -> could 'crack' RSA
- System of linear equations [Harrow, Hassidim, Lloyd, PRL 2008] Notable application to machine learning -> needs 'QRAM'
 - -> applications?

Variational quantum circuits, ML, ...

Parameterised quantum circuit $\{\theta_i\}$

Shallow quantum circuits

[Bravyi, Gosset, König, Science, 2018]

Quantum circuit

Relational statement $R(\bar{x}, \bar{y})$

Shallow quantum circuits

Relational statement $R(\bar{x}, \bar{y})$

Impossible to satisfy classically in constant circuit

Sampling

[Bremner, Josza, Shepherd 2011]

Subuniversal circuit families

Probabilistic output: \bar{y} with prob $p(\bar{y})$

No classical poly circuit outputting $\bar{y} p(\bar{y})$ else PH collapses

Sampling

[Bremner, Josza, Shepherd 2011]

Subuniversal circuit families

Probabilistic output: \bar{y} with prob $p(\bar{y})$

No classical poly circuit outputting $\bar{y} p(\bar{y})$ else PH collapses

Quantum randomness at play here? Links to shallow circuit?
Sampling hardness implies shallow circuit

Sampling

Shallow circuit advantage

 \boldsymbol{y}_1

 \boldsymbol{y}_2

Y₃

 $\begin{array}{c} |x_{4}\rangle \\ |x_{5}\rangle \\ |x_{6}\rangle \\ |x_{7}\rangle \\ |x_{8}\rangle \end{array} \begin{array}{c} y_{4} \\ y_{5} \\ y_{5} \\ y_{7} \\ y_{7} \\ y_{8} \end{array} \\ \hline Const \\ \hline Relational statement \\ R(\bar{x}, \bar{y}) \end{array}$

Impossible to satisfy classically in constant circuit

No classical poly circuit outputting $\bar{y} p(\bar{y})$ else PH collapses

4. What's so hard about building a quantum computer?

Quantum coherence is fragile

- Decoherence, limits to 'classical'
- Require huge control and optimisation …

4. What's so hard about building a quantum computer?

Quantum coherence is fragile

- Require huge control and optimisation ...

Quantum error correction and Fault Tolerance

- Possible !: more systems, more steps, Feedback
- Huge overhead...

PAPERS PERSPECTIVES

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney¹ and Martin Ekerå^{2,3}

¹Google Inc., Santa Barbara, California 93117, USA ²KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden ³Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden

20⁶ noisy qubits to factor 2048 bits

4. What's so hard about building a quantum computer?

Quantum coherence is fragile

- Decoherence, limits to 'classical'
- Require huge control and optimisation ...

Quantum error correction and Fault Tolerance

- Possible !: more systems, more steps, Feedback
- Huge overhead...

PAPERS PERSPECTIVES

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney¹ and Martin Ekerå^{2,3}

¹Google Inc., Santa Barbara, California 93117, USA
²KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
³Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden

20⁶ noisy qubits to factor 2048 bits

Challenge: good codes/schemes, that work with real systems...

What can we do with quantum computers?

'NISQ'

FT?

77

How much noise

Exponential 'improvement'

- Shor's factoring algorithm [Shor, FOCS 1994] Factors numbers into primes -> could 'crack' RSA
- System of linear equations [Harrow, Hassidim, Lloyd, PRL 2008] Notable application to machine learning Variational, ML, ... -> needs 'QRAM' -> applications?

Require FTQC

'Proven' quantum advantage

- Sampling problems [Aaropson, Arkhipov 2013] [Bremner, Josza, Shepherd 2011] Boson sampling, IQP, random shallow circuits...
 - -> efficient classical simulation => collapse of PH -> applications?
- Shallow circuit advantage Bravyi, Gosset, König, Science, 2018 Constant depth Q requires log depth C -> PROOF: concenquence of Q randomness -> applications?

6. Quantum Networks

Conclusions

Quantum computing is not that complicated...

Just a special linear algebra processor

It's not just Shor's algorithm

Sampling Variational, ML, … Shallow circuit Search

It's not just 'quantum computers'

. . .

