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Quantum randomness is different from classical ‘randomness’



Classical randomness = ignorance!

E.g. - rolling a die


        - Boltzmann distribution of particles in a box If we know the initial conditions, 
outcome is deterministic



Quantum randomness = ignorance!



Sunglasses, photographic plates…. 

The tilting head game:     (try looking at your phone / tablette     
                      through polarised sunglasses and tilt you head)

Polarisation filter measurements

Quantum randomness = ignorance!



Polarisation filter measurements

• Polarizing filters: only aligned photons pass

• Light comes in single photons

https://physicsworld.com/a/frog-
photoreceptor-counts-photons/

https://www.youtube.com/watch?v=MbLzh1Y9POQ


Polarisation filter measurements

Only light polarised in fixed direction passes 
through



Combining filters -> less light

Sequence of perpendicular filters    -> NO LIGHT gets ghrough



Combining filters -> less light

Sequence of perpendicular filters    -> NO LIGHT gets ghrough

Sunglasses experiment 
please! 



?

Inserting a filter…?



?

Inserting a filter…?

How much light gets 
through?

?



Polarisation filter measurements: 

A classical model

• The ‘measurement’ is deterministic (modulo our ignorance)

Classical assumptions:

• Measurements do not change the system

• Light comes in single photons



• The ‘measurement’ is deterministic

Classical assumptions

• Measurements do not change the system

Individual photon should either 
go through or get absorbed 
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• The ‘measurement’ is deterministic
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• Measurements do not change the system

Individual photon should either 
go through or get absorbed 

determinsitically! 
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• Light comes in single photons



Polarisation filter measurements: 

A classical model

Individual photon should either 
go through or get absorbed 

determinsitically! 

?



Polarisation filter measurements: 

A classical model

-> if absorbed, no photon out  



Polarisation filter measurements: 

A classical model

-> if not absorbed
Having an extra filter in between should 

not effect this property



Polarisation filter measurements: 

A classical model

-> if not absorbed
Having an extra filter in between should 

not effect this property

…as if no filter…
-> no photon out



Polarisation filter measurements: 

A classical model

?

Classically: in all cases 
-> no photon out



In the real ‘quantum world…



In the real ‘quantum world…

Adding a filter 
       -> some photons out!



In the real ‘quantum world…

Sunglasses experiment 
please! 

Adding a filter 
       -> some photons out!
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α 0 +β 1• Out come is random 
• Output state depends on measurement result

Polarisation filter measurements: 

Quantum measurements 

Vector in 
Measurement = projection

ℂ2
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QM answer: Filters as a measurement

     +     α | ⟩ β | ⟩

Some easy linear algebra… Adding a filter 
       -> some photons out!



Quantum randomness is not just ignorance!



Quantum randomness is not just ignorance!

There is no way to assign ‘value’ to the polarisation and get a deterministic outcome



Polarisation filter measurements

• The ‘measurement’ is deterministic

Classical assumptions

• Measurements do not change the system

• Light comes in single photons

Individual photon should either 
go through or get absorbed 

determinsitically! 

Having an extra filter in 
between should not effect this 

propertyI don’t believe it!



Bell’s theorem

Use entangled pair to test!
Single, but distant, measurements

Locality =>  canNOT change state



Bell’s theorem

‘click’         1 
No ‘click’   -1

‘click’         1 
No ‘click’   -1

or

or

S= a.b+a.b'+a'.b−a'.b' ≤ 2

a 'a

b b'
Bell: ANY Local Hidden Variable model  
         (i.e. where some theory knows the outcome) 

       =2√2
QM gives!



Bell’s theorem

‘click’         1 
No ‘click’   -1

‘click’         1 
No ‘click’   -1

or

or

S= a.b+a.b'+a'.b−a'.b' ≤ 2

a 'a

b b'
Bell: ANY Local Hidden Variable model  
         (i.e. where some theory knows the outcome) 

       =2√2
QM gives!

Nobel prize in physics 2022 
Alain Aspect et al



Quantum randomness is not just ignorance!

There is no way to assign ‘value’ to the polarisation and get a deterministic outcome



Peres-Mermin magic square game

Games that ‘classical’ devices cannot win, but quantum can

Quantum randomness is different from classical ‘randomness’



Peres-Mermin magic square game



Peres-Mermin magic square game

vi = ± 1
v1 v2

v6v5v4

v7 v8 v9

v3

- Player assigns values to all squares in grid


- Referee chooses a column or a row, at 
random, and reads the the product of the 
values 


- Player wins if      




Peres-Mermin magic square game

- Player assigns values to all squares in grid


- Referee chooses a column or a row, at 
random, and reads the the product of the 
values 


- Player wins if      


vi = ± 1
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v7 v8 v9
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Peres-Mermin magic square game

- Player assigns values to all squares in grid


- Referee chooses a column or a row, at 
random, and reads the the product of the 
values 


- Player wins if      


vi = ± 1
v1 v2

v6v5v4

v7 v8 v9

v3

c1 = v1 . v4 . v7



Peres-Mermin magic square game

- Player assigns values to all squares in grid


- Referee chooses a column or a row, at 
random, and reads the the product of the 
values 


- Player wins if      


vi = ± 1
v1 v2

v6v5v4

v7 v8 v9

v3

r3 = v7 . v8 . v9



Peres-Mermin magic square game

- Player assigns values to all squares in grid


- Referee chooses a column or a row, at 
random, and reads the the product of the 
values 


- Player wins if      


r1 = v1 . v2 . v3 = 1

vi = ± 1

c1 = v1 . v4 . v7 = 1

r3 = v7 . v8 . v9 = − 1
r2 = v4 . v5 . v6 = 1

c2 = v2 . v5 . v8 = 1
c3 = v3 . v6 . v9 = 1

v1 v2

v6v5v4

v7 v8 v9

v3
r1 = 1

c1 = 1

r2 = 1

r3 = − 1

c2 = 1 c3 = 1



Peres-Mermin magic square game

- Player assigns values to all squares in grid


- Referee chooses a column or a row, at 
random, and reads the the product of the 
values 


- Player wins if      


r1 = v1 . v2 . v3 = 1

vi = ± 1

c1 = v1 . v4 . v7 = 1

r3 = v7 . v8 . v9 = − 1
r2 = v4 . v5 . v6 = 1

c2 = v2 . v5 . v8 = 1
c3 = v3 . v6 . v9 = 1

p(win) =
1
6 (p(c1 = 1) + p(c2 = 1) + p(c3 = 1) + p(r1 = 1) + p(r2 = 1) + p(r3 = − 1))
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Best possible p(win)?
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1
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Best possible p(win)?

p(win) =
1
6 (p(c1 = 1) + p(c2 = 1) + p(c3 = 1) + p(r1 = 1) + p(r2 = 1) + p(r3 = − 1))
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Best possible p(win)?
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c1 = 1 c2 = 1 c3 = 1
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p(win) =
5
6



Best possible p(win)?

p(win) =
5
6

r1 = 1

r2 = 1

r3 = − 1

c1 = 1 c2 = 1 c3 = − 1

1

11

1 1 1

11

−1



Best possible p(win)?

c1 = 1 c2 = 1 c3 = 1

- Any fixed (deterministic) 
assignment can only satisfy 5/6 
winning conditions


- Any randomized assignment 
can only do as well as the best 
deterministic assignment
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Best possible p(win)?

c1 = 1 c2 = 1 c3 = 1

- Any fixed (deterministic) 
assignment can only satisfy 5/6 
winning conditions


- Any randomized assignment 
can only do as well as the best 
deterministic assignment


c1 . c2 . c3 = r1 . r2 . r3

Cannot always win!

Incompatible with

c1 = c2 = c3 = r1 = r2 = 1
r3 = − 1

1

11

1 1 1

11

1

r1 = 1

r2 = 1

r3 = − 1
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- Any fixed (deterministic) 
assignment can only satisfy 5/6 
winning conditions


- Any randomized assignment 
can only do as well as the best 
deterministic assignment


Best possible classical p(win)?

pc(win) ≤
5
6

c1 = 1 c2 = 1 c3 = 1

1

11

1 1 1

11

1

r1 = 1

r2 = 1

r3 = − 1



Best quantum p(win)?

I ⊗ X

X ⊗ I

X ⊗ X

I ⊗ Z

Z ⊗ I

Z ⊗ Z

X ⊗ Z

Z ⊗ X

Y ⊗ Y

r1 = 1

r2 = 1

r3 = − 1

pQ(win) = 1

c1 = 1 c2 = 1 c3 = 1

- Quantum measurements with 
outcomes = 


- Can be co-measured in any row 
or column


-  Satisfy all winning conditions!


±1
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- Quantum measurements with 
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v1 v2

v6v5v4

v7 v8 v9

v3 r1 = 1

r2 = 1

r3 = − 1

c1 = 1 c2 = 1 c3 = 1

Peres-Mermin magic square game

- Constraints not achievable classically, can achieve quantumly


- Directe applications to shallow circuit, provable quantum advantage [Bravyi, Gosset, Koening, Science 2017]


Behind all quantum computational advantage? 

pQ(win) = 1

pc(win) ≤
5
6



2. What is quantum computing?
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Bit Qubit

α 0 +β 1

2. What is quantum computing?



0 / 1

Bit Qubit

α 0 +β 1

2. What is quantum computing?

Gates Unitary gates

∨

∧

¬
Not

OR

AND

x ¬x

x2

x1
x1 ∨ x2

x2

x1 x1 ∧ x2

Not

α |0⟩ + β |1⟩ α |1⟩ + β |0⟩X

Unitary map

(Reversible)
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Bit Qubit

α 0 +β 1

2. What is quantum computing?

Gates Unitary gates

Read out Readout measurements

x ¬
Not

¬x ∨
OR

x2

x1
x1 ∨ x2 ∧

AND

x2

x1 x1 ∧ x2

Not

α |0⟩ + β |1⟩ α |1⟩ + β |0⟩X

x α |0⟩ + β |1⟩

Outcome is random

p = |α |2 y = 0

p = |β |2 y = 1
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Bit Qubit

α 0 +β 1

2. What is quantum computing?

Gates Unitary gates

Read out Readout measurements

x ¬
Not

¬x ∨
OR

x2

x1
x1 ∨ x2 ∧

AND

x2

x1 x1 ∧ x2

Not

α |0⟩ + β |1⟩ α |1⟩ + β |0⟩X

x α |0⟩ + β |1⟩

Outcome is random

p = |α |2 y = 0

p = |β |2 y = 1

Note: 
Just linear algebra! 



2. What is quantum computing?

Circuit model Quantum circuit model

Universal quantum gate set:  CNOT,  pi/8,  H

x1

Orthoganol vectors          in Hilbert 
space Unitary evolution

Measurement in fixed     
basis

x2
x3
x4
x5
x6
x7
x8

y = (y1, y2 ,...yn)

y1
y2
y3
y4
y5
y6
y7
y8

0 , 1

y1

y2

y3

y4
y5

y6

x1
x2
x3
x4
x5
x6
x7
x8

Universal gate set:  NOT, AND, OR



Complexity classes for quantum computing

BPP

BPP if  a family of circuits  such and a 
polynomial  such that


- size of circuits 

- If , output 1 with probability > 2/3

- If , output 1 with probability <1/3

L ∈ ∃ {Cn}
q(n)

|Cn | ≤ q(n)
x ∈ L
x ∉ L

BQP

BPP if  a family of circuits  such and a 
polynomial  such that


- size of circuits 

- If , output 1 with probability > 2/3

- If , output 1 with probability <1/3

L ∈ ∃ {Cn}
q(n)

|Cn | ≤ q(n)
x ∈ L
x ∉ L

Decision problems:

Functions from bit strings length n to single bit





Language :

Set of inputs which output 1


                      iff    

f : {0,1}n → {0,1}

L

x ∈ L f(x) = 1



Other models of quantum 
computation?

Measurement based quantum computation

Adiabatic quantum computation
Complexity-wise 
equivalent to circuit model

…

x̄ ȳQuantum



Big conjecture of quantum computing

BPP             ⊂ BQP

Not proven…



3. What can we do with quantum computers?
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3. What can we do with quantum computers?
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Factoring primes (cracks 
RSA)

Quantum Machine 
Learning

Search

Quantum random 
walks

10 or 40-70 qubits 
-> 100 qubits beyond classical

Quantum Chemisty

Drug 
development

Material design
Many-body 
physics



3. What can we do with quantum computers?
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Exponential ‘improvement’ ‘Proven’ quantum advantage

• Shor’s factoring algorithm

• System of linear equations

[Shor, FOCS 1994]

[Harrow, Hassidim, Lloyd, PRL 2008] 

Factors numbers into primes 
-> could ‘crack’ RSA

Notable application to machine 
learning 
    -> needs ‘QRAM’ 
    -> applications?

• Sampling problems
[Aaronson, Arkhipov 2013]

Boson sampling, IQP, random 
shallow circuits… 

-> efficient classical simulation    
    => collapse of PH 
-> applications?

[Bremner, Josza, Shepherd 2011]

• Shallow circuit advantage
[Bravyi, Gosset, König, Science, 2018]
Constant depth Q requires log depth C 

-> PROOF: concenquence of ‘Q 
randomness’ 
-> applications?
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Exponential ‘improvement’ ‘Proven’ quantum advantage

• Shor’s factoring algorithm

• System of linear equations

[Shor, FOCS 1994]

[Harrow, Hassidim, Lloyd, PRL 2008] 

Factors numbers into primes 
-> could ‘crack’ RSA

Notable application to machine 
learning 
    -> needs ‘QRAM’ 
    -> applications?

• Sampling problems
[Aaronson, Arkhipov 2013]

Boson sampling, IQP, random 
shallow circuits… 

-> efficient classical simulation    
    => collapse of PH 
-> applications?

[Bremner, Josza, Shepherd 2011]

• Shallow circuit advantage
[Bravyi, Gosset, König, Science, 2018]
Constant depth Q requires log depth C 

-> PROOF: concenquence of ‘Q 
randomness’ 
-> applications?

?
Variational, ML, …



Variational quantum circuits, ML, …

68

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6
y7
y8

θ1

θ2θ3

θ4

θ5

Parameterised quantum circuit {θi}

ML, feedback loop
    -> Quantum chemistry 
    -> Machine learning  

 -> …



Shallow quantum circuits
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[Bravyi, Gosset, König, Science, 2018]

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6
y7
y8

Relational statement R(x̄, ȳ)

Const

n

Quantum circuit



Shallow quantum circuits
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[Bravyi, Gosset, König, Science, 2018]

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6
y7
y8

Relational statement R(x̄, ȳ)

Impossible to satisfy classically in constant circuit 

-> ‘Circuit’ magic square game…

Const

y1

y2

y3

y4
y5

y6

x1
x2
x3
x4
x5
x6
x7
x8

log(n)

nn

Quantum circuit Classical circuit



Sampling

71

Subuniversal circuit families

No classical poly circuit outputting                     else PH collapses

[Bremner, Josza, Shepherd 2011]

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6
y7
y8

All gates commute with X

Probabilistic output: 
             with prob p(ȳ)ȳ

p(ȳ)ȳ



Sampling

72

Subuniversal circuit families

No classical poly circuit outputting                     else PH collapses

[Bremner, Josza, Shepherd 2011]

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6
y7
y8

All gates commute with X

Probabilistic output: 
             with prob p(ȳ)ȳ

p(ȳ)ȳ

Quantum randomness at play here? Links to shallow circuit?



Sampling hardness implies shallow circuit

73

Subuniversal circuit families

No classical poly circuit outputting           
                                          else PH collapses

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6
y7
y8

ȳ

p(ȳ)ȳ

p(ȳ)

Sampling

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6
y7
y8

Const

Relational statement R(x̄, ȳ)

Impossible to satisfy classically in constant circuit 

Shallow circuit advantage



4. What’s so hard about building a quantum computer?
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Quantum coherence is fragile

- Decoherence, limits to ‘classical’ 
- Require huge control and optimisation … 
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Quantum coherence is fragile Quantum error correction and Fault Tolerance

- Decoherence, limits to ‘classical’ 
- Require huge control and optimisation … 

- Possible!: more systems, more steps, feedback 
- Huge overhead… 

20^6 noisy qubits to factor 2048 bits 
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Quantum coherence is fragile Quantum error correction and Fault Tolerance

- Decoherence, limits to ‘classical’ 
- Require huge control and optimisation … 

- Possible!: more systems, more steps, feedback 
- Huge overhead… 

20^6 noisy qubits to factor 2048 bits 

Challenge: good codes/schemes, that work with real systems…



What can we do with quantum computers?
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Exponential ‘improvement’ ‘Proven’ quantum advantage

• Shor’s factoring algorithm

• System of linear equations

[Shor, FOCS 1994]

[Harrow, Hassidim, Lloyd, PRL 2008] 

Factors numbers into primes 
-> could ‘crack’ RSA

Notable application to machine 
learning 
    -> needs ‘QRAM’ 
    -> applications?

• Sampling problems
[Aaronson, Arkhipov 2013]

Boson sampling, IQP, random 
shallow circuits… 

-> efficient classical simulation    
    => collapse of PH 
-> applications?

[Bremner, Josza, Shepherd 2011]

• Shallow circuit advantage
[Bravyi, Gosset, König, Science, 2018]
Constant depth Q requires log depth C 

-> PROOF: concenquence of ‘Q 
randomness’ 
-> applications?

?
Variational, ML, …

Require FTQC

‘NISQ’ 
How much noise 
FT?
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• Computation             
Exponential speed up (Shor), 
QML

• Communication         
Security (QKD), communication 
complexity

• Sensing                      
Sensitivity and precision 
measurements impossible 
classically

6. Quantum Networks



Conclusions

Quantum computing is not that complicated…

It’s not just Shor’s algorithm

It’s not just ‘quantum computers’

Variational, ML, …Sampling 
Shallow circuit 
Search 
…

x1
x2
x3
x4
x5
x6
x7
x8

y1
y2
y3
y4
y5
y6
y7
y8

Just a special linear 
algebra processor


