UE Biophysique 1

ECUE 1 : Biologie Structurale et Modélisation

Responsable: Romain Gautier (gautier@ipmc.cnrs.fr)

Niveau souhaité: M1

Objectifs: Acquérir les bases de la structure des biomolécules. Approfondir ses connaissances en thermodynamique statistiques autour des biomolécules. Diverses méthodes de simulations moléculaires seront abordées en théorie et en pratique.

Prérequis : Connaissance sur la chimie de base des atomes. Base de la thermodynamique (Enthalpie/entropie), mécanique élémentaire (ressort), informatique de base (OS linux).

Nombre d'heures : 30h (CM/TD)

Intervenants: Romain Gautier (MC, IPMC), Frédéric Cazals (DR, INRIA)

Contenu:

- 1. Introduction sur les biomolécules (~10h)
 - a. Protéines
 - b. Acides nucléiques
 - c. Techniques expérimentales de résolution de structure (X-ray crystallography, NMR, cryo-EM)
 - d. Les bases de données de structure (PDB, CATH, SCOP)
 - e. Prédiction de structure, outils bio-informatique d'analyse
- 2. Thermodynamique statistique et application à la reconnaissance bio-moléculaire $(\sim 10h)$
 - a. Interactions bio-moléculaires : énergie libre de dissociation, Kd
 - b. Représentations moléculaires -- Cartésian vs coordonnées internes
 - c. Energie potentielle et champs de force classiques
 - d. Notions de physique statistique : capacité calorifique, énergie libre
- 3. Méthodes de simulation : Théorie et travaux pratiques (~10h)
 - a. Visualisation moléculaire
 - b. Dynamique Moléculaire (MD) (tout atomes et gros grain)
 - c. Comparaisons de structures.
 - d. Autres techniques d'échantillonnage (Monte Carlo, basin hopping)

Modalités du contrôle des connaissances :

Contrôle intermédiaire écrit (30%) et un contrôle final écrit (70%).

ECUE 2 : Biologie physique de la cellule

Responsable: Jacques-Alexandre Sepulchre (jacques-alexandre.sepulchre@inphyni.cnrs.fr)

Niveau souhaité: M1

Objectifs : Étendre la panoplie des approches physiques en biologie cellulaire et moléculaire, complémentaires aux cours de biologie structurale et de biologie systémique. Comprendre la réponse cellulaire à diverses interactions physiques, en particulier mécaniques, thermodynamiques et électromagnétiques, décrite par des modèles de bases en physique, tels que la mécanique classique, l'électromagnétisme et les fondements de la mécanique quantique.

Pré-requis : Bases de physique générale (mécanique, thermodynamique, électrostatique), équations différentielles ordinaires, calcul scientifique.

Nombre d'heures : 16h (CM /TD)

Intervenants: Xavier Noblin (CR, INPHYNI), Jacques-Alexandre Sepulchre (MC, INPHYNI)

Contenu:

- Propriétés électrostatiques des biomolécules en solutions ioniques (2h)
- Encombrement cellulaire et conséquences sur les réactions biochimiques (2h)
- Physique de la photosynthèse (3h)
- Physique de la vision (1h)
- Éléments d'architecture et squelette cellulaire (2h)
- Pression osmotique et applications (2h)
- Moteurs moléculaires (4h)

Modalités du contrôle des connaissances :

Contrôle intermédiaire écrit (30%) et un contrôle final écrit (70%).