Introduction à l'intelligence artificielle appliquée à la biologie

Structure : EUR LIFE
Niveau du cours : M1, M2, Doctorat
Code de l'UE : BMUIBI1
Semestre : impair
Lieu d'enseignement : Campus Valrose
Langue : français

Public

Les étudiant·e·s en première ou deuxième année du Master Sciences du Vivant (parcours GD, CRT, NCI et P3), ainsi que les doctorant·e·s.

Prérequis 

Aucun prérequis n'est nécessaire pour participer à ce cours.

Organisation

Présentiel :
- 12h de cours magistraux (CM)
- 4h de travaux dirigés (TD)

À propos 

Présentation du cours

Objectifs du cours

À la fin de ce cours, l’apprenant·e sera capable :

  • D’expliquer les concepts et les méthodes clés de l’IA
  • D’appréhender les capacités, limites et enjeux des nouveaux systèmes d’IA
  • De débuter une intégration des progrès apportés par l’IA dans l'exploration des problématiques de recherche liées aux sciences de la vie et aux neurosciences

L’intelligence artificielle (IA) moderne est un ensemble d’avancées majeures en mathématiques appliquées, statistiques et informatique. Elle apporte avec elle de nouvelles méthodes et outils qui affectent de façon croissante les pratiques professionnelles, et la société dans son ensemble.
Ce cours d'introduction à l'IA, spécifiquement conçu pour les biologistes, vise à familiariser les étudiant·es avec les concepts fondamentaux et les applications pratiques de l'IA dans les sciences de la vie et les neurosciences. Il n’a pas pour objectif d’enseigner les spécificités techniques de l'IA, mais d’offrir aux étudiant·es la possibilité de se confronter à ces technologies, déjà intégrées dans l'écosystème de recherche en biologie pour traiter des questions fondamentales (prédiction de la classe d’une tumeur à partir de l’expression génétique, classification cellulaire à partir de données de séquençage d’ADN, aide au diagnostic du cancer et à la décision en pharmacovigilance, immunologie…). En mettant en évidence les limites des techniques actuelles et les enjeux scientifiques, sociétaux et environnementaux liés à ces nouvelles technologies, les étudiant·es pourront développer leur esprit critique et saisir les opportunités que l’IA entraîne dans leurs disciplines respectives.

La réussite à ce cours donnera droit à 3 ECTS.

Ce cours est dispensé par l’équipe EFELIA (École Française de l’Intelligence Artificielle) et s’inscrit dans la stratégie nationale pour l’IA. Au niveau local, le projet est opéré par l'Institut 3IA Côte d'Azur.

Enseignant·e·s

Modalités pédagogiques
  • Apports théoriques
  • Études de cas
  • Lecture d’articles scientifiques
  • Espace Moodle
  • Wooclap (sondage, brainstorming, etc.)
Modalités d'évaluation

Contrôle continu intégral.

  • Fiche de synthèse
  • QCM
Matériel

Il est conseillé d'apporter son ordinateur portable à chaque séance.

Bibliographie

Références :

  • Casilli, A. (2019), En attendant les robots. Enquête sur le travail du clic, Paris, Seuil.
  • Crevier, D. (1999), À la recherche de l’intelligence artificielle, Paris, Flammarion.
  • Floridi, L. (2023), The Ethics of Artificial Intelligence: Principles, Challenges, and Opportunities, Oxford, Oxford University Press.
  • Leonelli, S. (2016), Data-Centric Biology: A Philosophical Study, Chicago, University of Chicago Press.


Autres ressources :

Soutien à la réussite
  • TUT'TOP : bénéficier du tutorat par les pairs sur le plan méthodologique, social, administratif ou logistique.
  • écri+ : améliorer son français écrit.
  • Centre de ressources en langues : développer ses compétences en langues vivantes (française ou étrangères).
  • METODA : développer ses compétences en recherche documentaire.
  • S'orienter / Se réorienter : être accompagné par les conseillers d'orientation et d'insertion professionnelle de l'université.
  • Centre de santé et aide sociale : prendre soin de sa santé physique et mentale et se faire accompagner en cas de difficulté sociale.
  • Cellule Handicap : découvrir les aides proposées pour les étudiant.es en situation de handicap.
  • Plateforme de signalement : écoute et accompagnement des victimes ou témoins d’actes de violence, de harcèlement ou de discrimination (violences sexistes et sexuelles, LGBTphobies, racisme, xénophobie…).

Programme

Séance Date Durée Enseignant·es Sujet
1 17/10/2024
8h00 – 12h00
4h Océane Fiant Histoire et concepts (1/2) :
  • Origines
  • Approches symboliques
2 31/10/2024
8h00 – 12h00
4h Océane Fiant Histoire et concepts (2/2) :
  • Approches connexionnistes
Problèmes de l'IA :
  • Biais
  • Explicabilité
  • Généralisabilité
3 07/11/2024
8h30 - 12h30
4h Océane Fiant IA générative :
  • Présentation
  • Exemples d'applications
  • Problèmes (biais, "hallucinations", droit d'auteur, etc.)
14/11/2024
8h00 – 12h00
4h Océane Fiant Enjeux éthiques et sociaux de l'IA :
  • Machines morales
  • Digital labor
  • Economie de l'attention
5 21/11/2024
8h00 – 12h00
4h Océane Fiant IA en biologie :
  • L'informatisation de la biologie
  • 2 exemples d'applications :
    • Exemples biologie (prédiction de la structure des protéines, etc.)
    • Exemples neurosciences (analyse de données cérébrales, interface cerveau-machine, etc.
6 28/11/2024
8h00 – 12h00
4h Océane Fiant IA en médecine :
  • Histoire de l'aide à la décision en médecine
  • Exemples découverte et développement de médicaments (jumeau numérique, optimisation des essais cliniques)
  • Exemples typage des tumeurs (analyse par spectrométrie de masse, segmentation d'images histologiques, etc.)
Important : ce syllabus n’a aucune valeur contractuelle. Son contenu est susceptible d’évoluer en cours d’année.

Ce travail a bénéficié d'une aide de l'Etat gérée par l'Agence Nationale de la Recherche (ANR) au titre de France 2030 pour le projet EFELIA Côte d’Azur portant la référence ANR-22-CMAS-0004.